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bstract

The concentration of hydrogen peroxide is an important parameter in the azo dyes decoloration process through the utilization of advanced
xidizing processes, particularly by oxidizing via UV/H2O2. It is pointed out that, from a specific concentration, the hydrogen peroxide works as
hydroxyl radical self-consumer and thus a decrease of the system’s oxidizing power happens. The determination of the process critical point

maximum amount of hydrogen peroxide to be added) was performed through a “thorough mapping” or discretization of the target region, founded
n the maximization of an objective function objective (constant of reaction kinetics of pseudo-first order). The discretization of the operational

egion occurred through a feedforward backpropagation neural model. The neural model obtained presented remarkable coefficient of correlation
etween real and predicted values for the absorbance variable, above 0.98. In the present work, the neural model had, as phenomenological basis
he Acid Brown 75 dye decoloration process. The hydrogen peroxide addition critical point, represented by a value of mass relation (F) between
he hydrogen peroxide mass and the dye mass, was established in the interval 50 < F < 60.

2007 Elsevier B.V. All rights reserved.
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. Introduction

In the industry, optimization processes involve the mini-
ization or maximization of an objective function objective,

escribed in technical terms, economical terms or in both
spects. In general, the decision variables are subject to
estrictions, being it of security, maximum and minimum oper-
tional limits or linked to the process modeling equations
1].

Regarding the photooxidizing processes based on the
V/H2O2 action, it is pointed out that one of the economical and
rocess performance issues is related to the amount of hydro-
en peroxide to be added in the process. However, a number

f process variables, such as pH and temperature of the reac-
ion media, concentration of the compounds to be degraded,
ime of exposition to ultraviolet light and presence of inor-

∗ Corresponding author. Tel.: +55 12 31525996.
E-mail addresses: oswaldocobra@debas.faenquil.br (O.L.C. Guimarães),
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anic salts [2] are factors that, isolatedly, influence the process
erformance. In this case, the process becomes a system with
ultiple variables and, in this sense, neural networks appear as a
odeling methodology that can be applied to multidimensional

ystems.
In recent years, neural networks have been applied in various

reas in the chemical engineering and, concerning the advanced
xidizing processes, it can be quoted the work of Pareek et al.
3] in which it was studied the photodegrading of Spent Bayer
iquor, with the use of a feedforward-type neural network. Pear-
on correlation coefficients above 0.99 were obtained in this
ork.
Slokar et al. [4] utilized Kohonen type neural networks for

odeling the Reactive Red 120 dye decoloration process, as a
unction of the use of H2O2/UV.

Salari et al. [5] also applied the neural modeling technique
or treating waters contaminated with methyl tert-butyl ether
MTBE) by the combined use of hydrogen peroxide and ultravio-

et radiation. In this work, the authors utilized a feedforward-type
etwork to predict the MTBE concentration after photooxidiz-
ng treatment, obtaining Pearson correlation coefficients equal
o 0.998.
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36 O.L.C. Guimarães et al. / Chemical Engi

Nomenclature

[dye] dye concentration
GD = absorbanceo−absorbancei

absorbanceo
decoloration degree

A predicted values of absorbance
Absorbancei absorbance after decoloration
Absorbanceo initial absorbance
ABr Acid Brown 75
c1 constant of integration
Co number of neurons of the hidden layer
CP coefficient of correlation of Pearson
f transference function
F mass relation between the hydrogen peroxide

mass and the dye mass
k reaction constant
m0 initial hydrogen peroxide mass
m1 dye mass
mdye dye mass
MSE mean square error
N number of sample points
ptr set of training (input)
R Pearson correlation coefficients
T real values of absorbance
Ti temperature of each experiment
TO photooxidizing process operation time
TOC total organic carbon
VH2O2 hydrogen peroxide volume
wi the pondering weights of these signals or infor-

mation
xi values of the inlet signals
X vector das Entradas ao Neurônio
yt the values predicted by the neural network
Yt real values

Greek letters
η Constante de momentum
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The pH was kept constant during the reaction. Distilled water
λ maximum wavelengths

Guimarães and Silva [6] utilized a feedforward backpropaga-
ion neural network model for modeling the decoloration process
via H2O2/UV) of an azo dye group, where it was inserted
tructural characteristics of dyes such as the number azo bonds
nd sulphonate groups and process operational characteristics
temperature of the reaction system, pH, time of operation of
he reactor, concentration of dyes and hydrogen peroxide). The

odel was classified as hybrid in relation to the nature of the inlet
ariables (operational and structural) and Pearson correlation
oefficients of 0.96 were obtained.

Durán et al. [7] studied the degradation of the dye Reactive
lue 4 through the photo-Fenton process, with adjustment of

he experimental data via the neural models. The mathematical
odel reproduced the experimental data (with average response
alues measured by the constants of reaction for the discol-
ration and mineralization processes) at an interval of reliance
rom 82 to 86%.
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The present work aimed the determination of an optimum
ass relation between the initial amount of hydrogen peroxide

nd the amount of dye involved in the decoloration process.
or the analysis of this relation, was chosen the corante Acid
rown 75, manufactured for industry BASF, widely used in the

ndustries textile and of leathers. It is observed that works related
o the degradation or discoloration of this corante had not been
ound in the bibliography.

. UV/H2O2 process

It is widely accepted that the first step in the UV/H2O2 pro-
ess is the attack of the photon against the hydrogen peroxide
olecule and the subsequent formation of hydroxyl radical •OH

8]:

2O2 + hυ → 2•OH (1)

igh concentrations of H2O2 do not necessarily favor the kinet-
cs of the reaction, for after the reaction starts, the steps of
ropagation can be prevented by the excess of hydrogen per-
xide. This excess can act as a hydroxyl radical self-consumer
9], according to the reaction given by Eq. (2).

2O2 + •OH → H2O + HO2
• (2)

esides water, reaction (2) produces the hydroperoxyl radical,
ess reactive than the hydroxyl radical.

Thus, hydrogen peroxide in excess may react with the
ydroxyl radical and compete with the attack of this radical to
he dye in the solution during the photolysis [10].

Considering that the recombination reactions (Eqs. (3)–(6)
ay occur, there is the possibility of hydroxyl radical con-

umption, decreasing the probability of the organic compounds
xidation. Thus, a competition for the ultraviolet light starts.

2O2 + •O2H → •OH + H2O + O2 (3)

OH + •OH → H2O2 (4)

O2H + •O2H → H2O2 + O2 (5)

OH + •O2H → H2O + O2 (6)

he kinetics of the reaction is favored up to the H2O2 addi-
ion critical point. The critical point is related to various factors
uch as the amount of hydrogen peroxide added, reaction media
H, UV radiation wavelength, dye concentration and structural
haracteristics, besides other specific factors like the presence
f inorganic salts, which affect the reaction performance of the
ydroxyl radical.

. Materials and methods

Hydrogen peroxide 30% (w/w) was used in all photooxidiz-
ng procedures and solutions of NaOH and H2SO4 at 0.5 eq/L
ere used for the adjustment of the reaction mean initial pH.
as utilized in the composition of all processes.
The Acid Brown 75 decoloration was evaluated as a func-

ion of the absorbance measured every 5 min, via Femto 600
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Table 1
Levels of the operational variables

pH TO (min) [dye] mg/L VH2O2 (mL) T (◦C)
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Fig. 1. Acid Brown 75 molecular structure.

pectrophotometer, at the maximum absorbance wavelength
430 nm), optimized from the dye absorbance spectrum in aque-
us solution.

The mineralization extents were determined on the basis of
otal organic carbon content measurements (TOC), performed
y using total organic carbon analyzer; TOC-ASI 5000A, Shi-
adzu.
Fig. 1 presents the structure of the dye studied.
The photooxidizing process was performed in a Germetec

PJ 463-1 plug-flow reactor, with low pressure radiation source
f 21 W, and at the end of each experiment, the system, for
ashing purposes, was filled with slight acid solution and recir-

ulated.
Fig. 2 presents the laboratorial scheme utilized in the pho-

ooxidizing process.
After the discharge of the solutions and recirculation with

istilled water, the system was dismounted and the reactor filled
ith nitric acid solution 10% (v/v) for cleaning. The temperature
n each experiment was kept constant through Optherm DC1
hermostatic bath, in T ± 2 ◦C, where T is the temperature of
ach experiment, within a range of 22–45 ◦C.

Fig. 2. Laboratorial scheme.
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inimum (−1) 2 15 30 2 22
aximum (+1) 11 150 100 22 45

Table 1 defines the levels of the operational variables utilized
n the experiments.

. Artificial neural networks

Neural networks may be defined as “a set of mathematical
ethods and computational algorithms designed to simulate the

nformation processing and the acquisition of knowledge on the
uman brain”. The neural networks basic elements are the arti-
cial neurons, synapses, neural weights, transference functions,
eural networks architecture and neural networks training [11].

In an analogy to the biological neurons, the artificial neurons
ave a central processing structure (usually called net) and inlet
dendrites) and outlet (axon) ramifications.

Not going deeper on the physical–chemical processes
nvolved in the transmission of information between the biolog-
cal neurons, the signal enters the neurons through the dendrites,
asses through the cellular body and is then transmitted to other
eurons of the network by means of the axons. The transmission
f the signal of a neuron to the dendrites of another neuron is
alled synapse, which is basically the function of modulating
he signal exchanged between them. In the artificial neuron, this

odulation of the signal, or signal intensity, is represented by a
ondering factor called synaptic weight.

The value of the total signal that enters the neuron central
ody is called net and can be estimated through the multiplica-
ion of the signal that comes into the neuron times the synapse
eight of this signal. As the neurons have a large number of den-
rites and, thus, being able to establish various synapses with
ther neurons, the value of the total signal that comes to the
euron can be mathematically represented by Eq. (7):

et =
n∑

i=1

wixi (7)

he neuron outlet, thus, is obtained as a function of the inlet
ignal, that is, it can be considered that outlet = f(net), where f is
he transference function.

The transference function is necessary for the transformation
f the sum of the neurons inlet signals pondered weight in order
o determine the outlet signal value or intensity, being that one
f the most used functions is the sigmoidal function:

(net) = 1

1 + e−net (8)

he function of linear activation for the outlet layer is ade-

uate for continuous phenomena, as for instance the oxygen
iochemical demand or absorbance decrease in decoloration
rocesses. The sigmoidal-type transference functions are nec-
ssary to introduce non-linearity in the network.
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In order to determine the synaptic weight values a training
rocess is performed. The neural network training is a function
f the neural weights update, through a process called learning
hrough error corrections, where the values simulated by the
eural network are compared to the desired values. This way,
he objective is to determine the set of synaptic weights that

inimize an error function, like the mean square error (MSE)
quation defined by Eq. (9) [12]:

= MSE =
N∑

i=1

(Yt − ŷt)2

N
(9)

he training algorithm named backpropagation refers to the way
he weights are adjusted, and this algorithm is also known as
eneralized Delta Rule.
In the Generalized Delta Rule, in order to minimize the mean

quare error, the derivatives defined by Eq. (10) are estimated.

∇ k

j = ∂ε

∂W
(k)
j

(10)

he backpropagation algorithm utilizes the information of these
erivatives (gradient) for the moving on change of the weights
ccording to Eq. (11):

(k)
j (n + 1) = W

(k)
j (n) + μ(−→∇W

(k)
j (n)) (11)

n Eq. (11), μ > 0 is the network learning rate, which controls
he degree according to which the gradient affects the weights
hange and n means the current iteration [13].

It is possible to improve the speed of convergence of the arti-
cial neural network trained by the backpropagation algorithm

hrough the utilization of this momentum. The purpose of this
ethod is to add, when estimating the value of change of the

ynaptic weight, a fraction proportional to the prior alteration.
o, the introduction of this term in the equation of adaption of

he weights tends to improve the stability of the learning pro-
ess, favoring changes in the same direction and impeding local
inimums. The addition of the term momentum to accelerate

he learning process and avoid local minimums is frequently
tilized in the neural modeling, suppressing the oscillation of
eights in valleys and ravines.
In such a way, Eq. (11) can be substituted by Eqs. (12) and

13):

W
(k)
j (n) = 2μ(1 − η)δ(k)

j X
(k)
j (n) + η �W

(k)
j (n − 1) (12)

(k)
j (n + 1) = W

(k)
j (n) + �W

(k)
j (n) (13)

n Eqs. (12) and (13) 0 ≤ η ≤ 1 is the momentum constant.
The neural network adopted in the present work comprises

hree layers: inlet, hidden and outlet. Some theorems have
lready been found out about the networks characteristics [13]:
(a) if a function consists of a finite collection of points, then a
three layer network is able to learn it;

b) in case this function is continuous and defined in a compact
dominium, a three layer network is able to learn it, since
there are sufficient processing elements in the hidden layer.

p

2

3

neering Journal 141 (2008) 35–41

. Complete mapping by neural networks

An experimental design (25) was implemented making up
2 experiments for the dye. The 5 min interval data collection
rovided the formation of a neural network input matrix of 528
ines (samples) by 5 columns (process input variables) with the
ddition of some random experiments. The addition of these
andon points was made in central and intermediate points to the
xtremes of the variables. The output factor of a neural model
as constituted of 528 absorbance values in the range of [0,2].
The neural model input and output values were normalized in

uch a way that the average value would be zero and the standard
eviation equal to 1.

The sample set deriving from the experiments was divided in
raining (50%), validation (25%) and test (25%).

The feedforward neural model has been implemented in Mat-
ab software, with the following characteristics:

net.trainParam.goal = 1E−8; aimed training final error.
net.trainParam.lr = 0.1; learning rate.
net.trainParam.show = 25; screen actualization (epochs).
net.train.Param.mc = 0.87; momentum rate.
net.trainParam.lr inc = 1.15; l.r. increment rate.
net.trainParam.lr dec = 0.75; Ir decrement rate.
net.trainParam.max max perf inc = 1.04; error maximum
increment.
net.performFcn = ‘mse’.
net = newff(minmax(ptr),[co], {‘tansig’ ‘purelin’},
‘traingdm’).

Co represents the hidden layer number of neurons and ptr
tands for the network inlet values training set (dye concentra-
ion, pH, time of operation, temperature and H2O2 volume). The
utlet variable was the solution absorbance.

A scheme for implementing the optimization process by
eans of “complete” mapping of values simulated by the neural
odel can be visualized in Fig. 3.
After the training and validation phases of the neural

odel obtained, the mapping of the operational conditions
as performed. This phase comprised the discretization of all
ossible process inlet variables. The multifunctional points dis-
retized and simulated by the neural model generated discretized
bsorbance values. The discretization period was equal to 0.01
hen simulating the neural model obtained.
Once simulated the discretization process to obtain the

bsorbance values, the linear regression (time of operation ver-
us absorbance) was performed (least square method) for the
djustment of the constant of reaction (k) in a pseudo-first order
odel, mapping the values of this constant through the dis-

retization of the inlet variables, up to the obtainment of its
aximum value of this constant.
The following restrictions were imposed during the training
hase and complete mapping or discretization.

2 ◦C ≤ Ti ≤ 45 ◦C (14)

0 mg/L ≤ [dye] ≤ 100 mg/L (15)
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experimental values.
Table 3 shows some results of the pseudo-first order adjust-

ment, where the best performances of the process around a mass
relation close to F = 50.449 is verified.
Fig. 3. Implementation of the optimization process.

D = 0.90 (16)

≤ pH ≤ 11 (17)

5 < TO ≤ 150 (18)

ml ≤ VH2O2 ≤ 22 ml (19)

hus, the objective was to determine the process inlet variables
alues that provided the maximum value of the reaction con-
tant, with the restriction of being reached a decoloration degree
mposed as a maximum of 90% for this study.

The photooxidation is supposed to be a reaction of pseudo-
rst order and the kinetics of color degrading can be expressed
y:

dCdye

dt
= −kCdye (20)

The integration of this expression produces:

n(Cdye) = −kt + c1 (21)
rom this expression, by linear regression, the values of the
onstants of reaction kinetics were determined. These values
ade the composition of the objective function to be mapped in
discretized form by the neural model.

able 2
oefficients of correlation

eurons hidden layer R (training) R (validation) R (test)

8 0.965 0.954 0.923
2 0.976 0.971 0.963
5 0.982 0.980 0.979
6 0.987 0.981 0.984
0 0.951 0.934 0.921

T
C

F

3
9
1
2
3
5
5
5
7
1

Fig. 4. Contour surface, ABr 75, Ti = 45 ◦C, 15 < TO < 150.

Table 2 presents the results of the adjustments for the training
50%), validation (25%) and test (25%) sets. The percentages
efer to the experimental data total set.

The values of the Pearson correlation coefficients above
.98 for value predicted for absorbance and absorbance real
alue indicate a good adjustment and prediction capacity for
he neural model. The neural model obtained (16 neurons in
he hidden layer) mapped a multidimensional space of the form
bsorbance = ([dye], pH, T, TO, VH2O2 ).

In order to avoid overtraining problems, the training was
nterrupted when the error corresponding to the validation set
ecame higher than the error corresponding to the training set
nd, according to this criteria, a number of epochs equal to 49
as obtained.
The graphic verification of the H2O2 addition critical behav-

or was performed through surface graphs. The k reaction
onstant maximum value was reached experimentally for values
f F in the range of 50–60, according to Eq. (22):

= m0

m1
(22)

n Eq. (22), m0 represents the initial hydrogen peroxide mass
nd m1 stands for the dye mass.

The Fig. 4 exemplifies the contour surface graph obtained for
able 3
onstant of pseudo-first order

K (min−1) R

.2450 0.0625 0.9989

.9990 0.0971 0.9864
6.6650 0.1253 0.9985
6.7170 0.1296 0.9966
3.0330 0.1326 0.9912
0.4490 0.1564 0.9958
3.2216 0.1481 0.9982
6.3206 0.1386 0.9956
3.6900 0.1112 0.9975
00.0900 0.1097 0.9965
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Table 4
Some results of the complete mapping

pH mdye Freal Fpredicted

9.8 100 50 < F < 60 55.55
10.0 120 50 < F < 60 51.33
10.5 130 50 < F < 60 52.22
10.1 140 50 < F < 60 58.00

9.9 150 50 < F < 60 50.00
9.6 200 50 < F < 60 57.89

1
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9.4 250 50 < F < 60 58.90
0.0 300 50 < F < 60 53.76

In Table 4, some results from contour surfaces graphs are
resented, for different operational conditions.

Table 5 presents some results obtained during the processo f
iscoloration of the Abr 75, where the efficiency of the process
n function of the utilization of UV/H2O2 is verified. Table 5
lso presents percentage of reduction of the TOC, indicating the
egree of mineralization of the dye proving that the method may
e considered ecologically applicable.
The effects of the variation of the levels of the inlet variables
an be observed in Fig. 5, where it is noticed that the higher
egree of discoloration obtained occurred in the high pH, tem-
erature and UV reactor time of operation levels. Concerning

able 5
egree of discoloration and mineralization

H Temperature V(H2O2) [Dye] TO GD %TOC

1 1 1 1 1 100 96.00
1 1 −1 −1 −1 95.02 90.27
1 −1 1 −1 1 100.00 96.89
1 −1 1 1 1 98.82 93.89
1 −1 −1 −1 1 100.00 94.21
1 1 1 1 −1 85.70 75.54
1 −1 −1 1 −1 90.20 80.29
1 −1 1 −1 −1 93.97 82.56
1 1 1 1 −1 99.74 89.00
1 1 −1 1 1 92.13 81.09
1 1 −1 1 −1 86.49 75.66
1 1 1 −1 1 93.95 83.62
1 −1 −1 1 −1 77.26 69.02
1 1 1 −1 1 100.00 92.01
1 −1 1 1 −1 88.19 80.98
1 −1 1 −1 1 100.00 91.98
1 −1 −1 1 1 93.57 86.09
1 −1 −1 1 1 98.67 90.77
1 1 1 −1 −1 87.97 85.33
1 1 1 1 1 89.54 86.86
1 1 −1 −1 −1 99.76 98.78
1 −1 −1 −1 −1 98.56 94.56
1 −1 −1 −1 1 98.35 89.90
1 1 1 −1 −1 100.00 95.62
1 −1 1 −1 −1 77.22 67.06
1 −1 1 1 1 98.27 89.34
1 1 −1 −1 1 100.00 97.00
1 −1 −1 −1 −1 82.50 81.23
1 −1 1 1 −1 85.80 74.78
1 1 −1 1 1 100.00 98.12
1 1 −1 1 −1 99.62 92.34
1 1 −1 −1 1 90.25 88.00
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Fig. 5. Main effects—degree of discoloration.

he hydrogen peroxide, it is noticed that a small reaction yield
ecrease happened when the value changed from the smallest
o the highest level and the same happened with the dye con-
entration. This result, in relation to the volume of hydrogen
eroxide added, was an indication of a maximum hydrogen per-
xide value to be added, from which the process of discoloration
oses yield.

In case that it is not kept constant, it is important to point out
hat the pH tends to an acid or slightly acid means during the
rocess of discoloration and that the pH variation is due to the
ncrease of [H+] concentration. The discoloration rate decreases
s the production of hydroxone ion increases, what indicates that
cid products can be resistant to the color degradation.

However, the characteristic of higher yield of the procsee of
iscoloration in alkaline pH is not prevalent for all dyes, for the
ork of Galindo and Kalt [14] can be cited, in which the process
f discoloration was more effective in acid means. Neverthless,
he authors report that for the dye Acid Orange 52 showed bet-
er performances of discoloration in neutral or slightly alkaline

eans.
Muruganandham and Swaminathan [15] report that the

ecrease of performance in alkaline means. The conjugated base
f the hydrogen peroxide (HO2

−) can react with the hydroxyl
adical, consequently reducing the rate of discoloration, accord-
ng to Eqs. (23) and (24):

2O2 + HO2
− → H2O + O2 + •OH (23)

OH + HO2
− → H2O + O2

− (24)

Chu and Ma [16] noticed that for poliazo dyes, when the
H is low, the amount of radicals •OH are inadequate for the
imultaneous attack to the N N bonds of the dye molecule
nd, thus, the reaction of photodiscoloration for the poliazo
ye tends to be incomplete in low pH. On the other hand, this
ffect is not observed, for the hydroxyl radicals are in higher
mount. The authors also noticed that the � bond electrons are
sually more diffuse and less steadily linked to the nitrogen

toms. Thus, they are particularly more susceptible to elec-
rophilic agents like the hydroxyl radicals. However, at low pH,

+ can interfere in the poliazo dyes conjugated system through
he formation of positively charged central amines, which tend
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o decrease the density of the azo groups and then describe the
eactivity in relation to the hydroxyl radical, according to Eq.
25):

•• ••
N

H+
→

H↓
N+

••
N (25)

heoretically, the rate of discoloration in alkaline pH can
ncrease due to the neutralization of the H+ ion generated in the
hotodiscoloration process. Shu et al. [10] enhance this result
ointing out that the relationship of better performance for the
nitial pH condition depends on the type of dye to be degraded.
n the study, for the Acid Orange 5, the authors report the best
ield of the reaction for pH close to value 2.

Thus, each dye structural condition or conditions of com-
ounds present together with the dyes can affect the behavior of
he reaction in relation to the pH, and consequently the perfor-

ance of the process of discoloration.
Some aspects must also be emphasized concerning the

mount of H2O2 added. It is widely considered that the first
tep in the H2O2/UV process is the attack of the photon to the
ydrogen peroxide and the formation of radicals [8], according
o Eq. (26):

2O2 + hυ → 2•OH (26)

igh peroxide concentrations do not necessarily favor the kinet-
cs, for after the initial step the steps of propagation can be
mpeded by the excess of peroxide acting as an •OH radicals
elf consumer [9], reaction given by Eq. (27):

2O2 + •OH → H2O + HO2
•. (27)

hus, hydrogen peroxide in excess can react with the hydroxyl
adical and compete with this radical attack to the dye in the
olution by the time of photolysis [10,17], for the recombina-
ion reactions may occur consuming the hydroxyl radical and
ecreasing the probability of occurrence of the oxidation of
rganic compounds, So, a competition for the ultraviolet light
tarts: there is a critical point for the hydrogen peroxide con-
entration value. Up to this point, the kinetics of discoloration is
avored by the increase of hydrogen peroxide concentration. This
ritical point is related to various factors such as the amount of
ydrogen peroxide added, reaction mean pH, UV radiation emis-
ion wavelength, dye concentration and specification, besides
ach process other specific factors linked to the utilization of
ther dyes as, for instance, the addition of intermediates in
he dyeing process, as, for example, the presence of sodium
hlorides and sulphates.

. Conclusions

The implementation of a neural model and the optimization

hrough complete mapping of the dominium of the independent
ariables in a process of decoloration by UV/H2O2 is presented
s a promising technique in the optimization of processes with
ultiple inlet variables.

[

[
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The neural model reached good prediction capacity with
earson correlation coefficients above 0.98 for the training, val-

dation and test sets.
From this neural model, the discretization of all process vari-

bles could be performed, which made possible the search for the
cid Brown 75 dye decoloration process critical point through

he use of UV/H2O2. The determination of the critical point,
r maximum amount of hydrogen peroxide to be added as a
unction of the dye initial mass, was established in a 50 < F < 60
nterval, coinciding with the real values obtained in the experi-

ents.
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